Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            ImportanceEfforts to understand the complex association between social media use and mental health have focused on depression, with little investigation of other forms of negative affect, such as irritability and anxiety. ObjectiveTo characterize the association between self-reported use of individual social media platforms and irritability among US adults. Design, Setting, and ParticipantsThis survey study analyzed data from 2 waves of the COVID States Project, a nonprobability web-based survey conducted between November 2, 2023, and January 8, 2024, and applied multiple linear regression models to estimate associations with irritability. Survey respondents were aged 18 years and older. ExposureSelf-reported social media use. Main Outcomes and MeasuresThe primary outcome was score on the Brief Irritability Test (range, 5-30), with higher scores indicating greater irritability. ResultsAcross the 2 survey waves, there were 42 597 unique participants, with mean (SD) age 46.0 (17.0) years; 24 919 (58.5%) identified as women, 17 222 (40.4%) as men, and 456 (1.1%) as nonbinary. In the full sample, 1216 (2.9%) identified as Asian American, 5939 (13.9%) as Black, 5322 (12.5%) as Hispanic, 624 (1.5%) as Native American, 515 (1.2%) as Pacific Islander, 28 354 (66.6%) as White, and 627 (1.5%) as other (ie, selecting the other option prompted the opportunity to provide a free-text self-description). In total, 33 325 (78.2%) of the survey respondents reported daily use of at least 1 social media platform, including 6037 (14.2%) using once a day, 16 678 (39.2%) using multiple times a day, and 10 610 (24.9%) using most of the day. Frequent use of social media was associated with significantly greater irritability in univariate regression models (for more than once a day vs never, 1.43 points [95% CI, 1.22-1.63 points]; for most of the day vs never, 3.37 points [95% CI, 3.15-3.60 points]) and adjusted models (for more than once a day, 0.38 points [95% CI, 0.18-0.58 points]; for most of the day, 1.55 points [95% CI, 1.32-1.78 points]). These associations persisted after incorporating measures of political engagement. Conclusions and RelevanceIn this survey study of 42 597 US adults, irritability represented another correlate of social media use that merits further characterization, in light of known associations with depression and suicidality.more » « lessFree, publicly-accessible full text available January 2, 2026
- 
            ImportanceIdentifying and tracking new infections during an emerging pandemic is crucial to design and deploy interventions to protect populations and mitigate the pandemic’s effects, yet it remains a challenging task. ObjectiveTo characterize the ability of nonprobability online surveys to longitudinally estimate the number of COVID-19 infections in the population both in the presence and absence of institutionalized testing. Design, Setting, and ParticipantsInternet-based online nonprobability surveys were conducted among residents aged 18 years or older across 50 US states and the District of Columbia, using the PureSpectrum survey vendor, approximately every 6 weeks between June 1, 2020, and January 31, 2023, for a multiuniversity consortium—the COVID States Project. Surveys collected information on COVID-19 infections with representative state-level quotas applied to balance age, sex, race and ethnicity, and geographic distribution. Main Outcomes and MeasuresThe main outcomes were (1) survey-weighted estimates of new monthly confirmed COVID-19 cases in the US from January 2020 to January 2023 and (2) estimates of uncounted test-confirmed cases from February 1, 2022, to January 1, 2023. These estimates were compared with institutionally reported COVID-19 infections collected by Johns Hopkins University and wastewater viral concentrations for SARS-CoV-2 from Biobot Analytics. ResultsThe survey spanned 17 waves deployed from June 1, 2020, to January 31, 2023, with a total of 408 515 responses from 306 799 respondents (mean [SD] age, 42.8 [13.0] years; 202 416 women [66.0%]). Overall, 64 946 respondents (15.9%) self-reported a test-confirmed COVID-19 infection. National survey-weighted test-confirmed COVID-19 estimates were strongly correlated with institutionally reported COVID-19 infections (Pearson correlation,r = 0.96;P < .001) from April 2020 to January 2022 (50-state correlation mean [SD] value,r = 0.88 [0.07]). This was before the government-led mass distribution of at-home rapid tests. After January 2022, correlation was diminished and no longer statistically significant (r = 0.55;P = .08; 50-state correlation mean [SD] value,r = 0.48 [0.23]). In contrast, survey COVID-19 estimates correlated highly with SARS-CoV-2 viral concentrations in wastewater both before (r = 0.92;P < .001) and after (r = 0.89;P < .001) January 2022. Institutionally reported COVID-19 cases correlated (r = 0.79;P < .001) with wastewater viral concentrations before January 2022, but poorly (r = 0.31;P = .35) after, suggesting that both survey and wastewater estimates may have better captured test-confirmed COVID-19 infections after January 2022. Consistent correlation patterns were observed at the state level. Based on national-level survey estimates, approximately 54 million COVID-19 cases were likely unaccounted for in official records between January 2022 and January 2023. Conclusions and RelevanceThis study suggests that nonprobability survey data can be used to estimate the temporal evolution of test-confirmed infections during an emerging disease outbreak. Self-reporting tools may enable government and health care officials to implement accessible and affordable at-home testing for efficient infection monitoring in the future.more » « less
- 
            ImportanceTrust in physicians and hospitals has been associated with achieving public health goals, but the increasing politicization of public health policies during the COVID-19 pandemic may have adversely affected such trust. ObjectiveTo characterize changes in US adults’ trust in physicians and hospitals over the course of the COVID-19 pandemic and the association between this trust and health-related behaviors. Design, Setting, and ParticipantsThis survey study uses data from 24 waves of a nonprobability internet survey conducted between April 1, 2020, and January 31, 2024, among 443 455 unique respondents aged 18 years or older residing in the US, with state-level representative quotas for race and ethnicity, age, and gender. Main Outcome and MeasureSelf-report of trust in physicians and hospitals; self-report of SARS-CoV-2 and influenza vaccination and booster status. Survey-weighted regression models were applied to examine associations between sociodemographic features and trust and between trust and health behaviors. ResultsThe combined data included 582 634 responses across 24 survey waves, reflecting 443 455 unique respondents. The unweighted mean (SD) age was 43.3 (16.6) years; 288 186 respondents (65.0%) reported female gender; 21 957 (5.0%) identified as Asian American, 49 428 (11.1%) as Black, 38 423 (8.7%) as Hispanic, 3138 (0.7%) as Native American, 5598 (1.3%) as Pacific Islander, 315 278 (71.1%) as White, and 9633 (2.2%) as other race and ethnicity (those who selected “Other” from a checklist). Overall, the proportion of adults reporting a lot of trust for physicians and hospitals decreased from 71.5% (95% CI, 70.7%-72.2%) in April 2020 to 40.1% (95% CI, 39.4%-40.7%) in January 2024. In regression models, features associated with lower trust as of spring and summer 2023 included being 25 to 64 years of age, female gender, lower educational level, lower income, Black race, and living in a rural setting. These associations persisted even after controlling for partisanship. In turn, greater trust was associated with greater likelihood of vaccination for SARS-CoV-2 (adjusted odds ratio [OR], 4.94; 95 CI, 4.21-5.80) or influenza (adjusted OR, 5.09; 95 CI, 3.93-6.59) and receiving a SARS-CoV-2 booster (adjusted OR, 3.62; 95 CI, 2.99-4.38). Conclusions and RelevanceThis survey study of US adults suggests that trust in physicians and hospitals decreased during the COVID-19 pandemic. As lower levels of trust were associated with lesser likelihood of pursuing vaccination, restoring trust may represent a public health imperative.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
